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A gap between eddy-viscosity-type and second-order models is bridged using the results of a two-scale
direct-interaction approximation developed for the study of turbulent shear flows. This work provides a
method for incorporating the findings from models of eddy-viscosity-type into second-order models, and
vice versa. Specifically, the effect of helicity controlling energy-cascade processes is incorporated into a
second-order model. Then, a higher-order eddy-viscosity-type expression for the Reynolds stress is de-
rived through the application of an iterative approximation to the second-order model. The latter result
is tested in a turbulent rotating channel flow and its usefulness is confirmed. Effects of flow trajectory
are also discussed in the context of the effect of an adverse pressure gradient on the isotropic eddy

viscosity.

PACS number(s): 47.27.—i

L. INTRODUCTION

Turbulence models based on one-point quantities such
as the mean velocity and the turbulent energy have been
studied extensively for several reasons. One reason is
that all the scales in a turbulent motion appearing in im-
portant engineering and scientific phenomena cannot be
resolved simultaneously using the largest computer now
available. Another reason is related to the abstraction of
intrinsic properties of a turbulent motion. Even if all the
scales in a turbulent flow can be resolved in a computer
simulation, it is necessary to abstract compactly the
characteristics of the flow from a formidable amount of
numerical data for a clear understanding of turbulence
mechanism. In the one-point turbulence modeling, atten-
tion is focused on the mean-field and energetic parts of
fluctuations. Therefore, the one-point turbulence model-
ing is a promising approach to the abstraction of primary
characteristics of large-scale motions in a turbulent flow.
The necessity of proper turbulence models in the study of
astrophysical or geophysical phenomena is clear because
of their huge spatial scales [1]. A shortcoming of one-
point modeling is that small-scale components closely
connected with rapid time variation are generally beyond
its scope.

The current turbulence models are classified roughly
into two categories. One is the models based on approxi-
mate expressions for the Reynolds stress using the eddy-
viscosity concept or its extended form. Another is the
second-order models, in which the pressure- velocity-
strain correlation in the Reynolds-stress transport equa-
tion plays a central role. These two types of models have
been constructed by making full use of the invariance
principles intrinsic to the Navier-Stokes equation as well
as dimensional and tensor analyses [2,3].

Over the past ten years, some progress has been made
in the study of turbulence models based on the applica-
tion of two-point closure methods, such as the two-scale
direct-interaction approximation (TSDIA) [4-6], the
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renormalization-group (RNG) method [7-9], etc. A typ-
ical property of these methods is that they give an asymp-
totic expansion for the Reynolds stress with the
isotropic-eddy-viscosity representation as the leading
term. The similar situation is also encountered in the
analysis of the pressure- velocity-strain correlation in the
Reynolds-stress transport equation [10]. As a result,
some additional theoretical devices are necessary for
deriving the counterpart in the second-order modeling
(for instance, see [11,12]). As an effect that has been
missing in the current turbulence modeling, the impor-
tance of helicity effects on the Reynolds stress has been
pointed out recently by the author and Yokoi [13,14] in
close relation to effects of vorticity. Specifically, the tur-
bulent helicity was shown to control the energy cascade
processes and be an important measure of duration of
large-scale three-dimensional flow structures.

The above-stated developments in the turbulence mod-
eling have been made rather independently in the studies
of the eddy-viscosity-type modeling, the second-order
modeling, and the two-point closure methods. In this
work, we shall bridge a gap between the first two
methods through the intermediation of the last,
specifically, using the results of the TSDIA. As a result,
we shall show that the findings in the eddy-viscosity-type
modeling can be used in the second-order modeling. The
present paper is organized as follows. The fundamental
equations are given in Sec. II. In Sec. III, a Reynolds-
stress transport equation with the effect of helicity includ-
ed is derived through the renormalization of a general-
ized eddy-viscosity-type expression for the Reynolds
stress that was obtained using the TSDIA. In Sec. IV, a
higher-order eddy-viscosity-type expression for the Rey-
nolds stress with the frame-rotation effect incorporated is
derived through the application of an iterative approxi-
mation to the Reynolds-stress transport equation. The
role of each term in the resulting expression is discussed
to clarify some prominent features of turbulent flows. In
Sec. V, a rotating channel flow is investigated as an exam-
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ple for confirming the usefulness of the present method.
In Sec. VI, the familiar model for the isotropic eddy
viscosity is extended to the representation that includes
effects of trajectory appearing in flows under an adverse
pressure gradient, along a curved boundary, etc. The
concluding remarks are given in Sec. VII.

II. FUNDAMENTAL EQUATIONS

Throughout this work, we consider a fluid motion at
very low Mach numbers to neglect fluid compressibility.
Such a motion of a viscous fluid is described by the
Navier-Stokes equation

%‘;1-+(u-V)u=—Vp+vAu , (1)
with the solenoidal condition V-u=0, where u is the ve-
locity, p is the pressure divided by fluid density, and v is
the kinematic viscosity.

In the turbulence modeling of one-point type, attention
is focused on large-scale components of a turbulent
motion. To this end, we use the ensemble mean { ) to
divide a quantity f into the mean { f ) and the fluctuation
f'as

f=F+f', F=(f), )

where f=(uw,p,0), F=(U,P,Q), and f'=(u',p’,e’")
[@ (=V Xu) is the vorticity]. The mean velocity U obeys
the equation

—I*)D—Itj-=—VP+V-R +vAU , (3)

where D /Dt=09/0t+(U-V) and R is the Reynolds stress
defined by

R, =—(uju)) @

[(V-R);=(3/0x;)R;]. On the other hand, the equation
for u’ is

%+(u’~V)U+V-(u’u’+R )=—Vp'+tvAu', (5)
with V-u'=0.

For the later discussion of the second-order modeling,
we give the transport equation for the Reynolds stress.
From Eq. (5), we have

DR;; R ay; R aU;

Dt | ax, 7 dxy i
te,— | =2 | T, +vAR ©
€;j ax, ijk TVAR;,

where IT;;, etc., are defined as

I, =(p’ Ou; + Qui )
[j_<p ox;  9x; > ?

—oy{ |24 || 24 ®)
€~ v( ax, | |ox, >

Ty =—[ujujug )+ p'u/ )8, +{p'uj)8;1. (9

Specifically, the turbulent energy K obeys

%=Pk—E+V'TK+VAK , (10)
where
K=(u?/2), (1
Py =—(u/uj E;—Z’ , (12)
(|24 ) 0
ox; ’

u’> . (14)

Here we should make the following points. One is the
fact that the pressure- velocity-strain correlation II;; does
not contribute to the K equation (10), but it plays a key
role in the partition of energy among three components
(u?), {u?), and {u?). Namely, IT;; is closely associ-
ated with the degree of anisotropy in a turbulent motion.
Many of the shortcomings of eddy-viscosity-type models
are considered to arise from the fact that these models
are not directly linked with II;. Another point to be
made is linked with the effect of (D/Dt)R;; in Eq. (6).
The Lagrange derivative D /Dt describes convection or
trajectory effects (in this paper, we shall use the latter ter-
minology). As a result, (D/Dt)R;; is important in ex-
pressing these effects on turbulent intensities. Their typi-
cal examples are effects of boundary curvature and ad-
verse pressure gradient. This point is also a primary
cause of the shortcomings of eddy-viscosity-type models.

III. DERIVATION OF REYNOLDS-STRESS
TRANSPORT EQUATION

A goal of the second-order modeling is to relate II;
[Eq. (7)] and T3 [Eq. (9)], etc. to R;;, U, etc. and close
Eq. (6). In Eq. (6), I1;; is specifically important, since it
has great influence on the anisotropy of turbulent intensi-
ties, as has already been noted. In its modeling, much at-
tention has really been paid to the satisfaction of the con-
straints and invariance properties intrinsic to the
Navier-Stokes equations. Such representative models are
the models of Launder, Reece, and Rodi [15], Speziale,
Sarkar, and Gatski [16], Shih, Chen, and Lumley [17],
etc. Two-point closure methods have also been applied
to the investigation of Il;;, as in the works of Weinstock
[18,19] and Rubinstein and Barton [11].

On the other hand, the author [12] has recently pro-
posed a new method of deriving a model Reynolds-stress
transport equation through the investigation of an eddy-
viscosity-type expression for the Reynolds stress itself us-
ing the TSDIA. A merit of this method lies in the fact
that the two-point analysis is made of the second-order
correlation R;;, but not of the third-order ones like IT;;.
In what follows, we shall summarize the above method
and at the same time extend it to incorporate the effect of
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turbulent helicity into a model Reynolds-stress transport  nolds stress B;;, which is defined by
equation.
B;j=R;+3K5; , (15)
A. TSDIA results for the Reynolds stress . .
1s written as
We first combine the previous TSDIA higher-order ex- _
pression [4] for the Reynolds stress with the recent re- B;= 2_4 (By)y - (16)
sults [13,14] concerning the effect of turbulent helicity on n=1
the stress. As a result, the deviatoric part of the Rey- Here the first few terms are given by
]
(Bij)IE(Bij)E,S:VE,SSij N (17)
(By)=(By)gu=Cry(K/e) | | 2 +
i R=E\DBylE v £ u(K/€) Dt VEs Sij Rpu» (18)
oH oH
— - _ 2 of1 oa
(Bl])3:('B1])H— CH(I/G)VE,S Q" ax} +Q] ax, %Q.VHSU ] s (19)
(B,-j )4E(Bij )N = —CNI(K /G)VE,S(SikSkj +Sijk,» - %S'SSU )— CNZ(K /€)VE,S(Sikaj +Sjkﬂki )
+CN3(K/6)VE,S(Qikaj—%Q:Qsij) , (20)
(B;)s=(By). = —C.(K /e) | 2
y)s=(By)e=—C(K /&) |- |(vssSy) @D
(Bij )6E(Bij)T=Cc(K/€)V'TBij N 22)

with the definition A4:B = A;;B;. The eddy viscosity
vg s> the mean velocity-strain tensor S;;, the mean vorti-

city tensor (};;, and the turbulent helicity H are defined as

vps=CgsK?/€, (23)
=90 28U (24)
Yoooax;  dx;

a,=2Y% _ 29U (25)
Yooax,  ax;

H=(u"a'), (26)

respectively. Moreover, R ; in Eq. (18) is given by

Ch (K3 /e 28

Rgpy= = IS 27)

ij o

and Tp;; represents the transport effect, which will be re-
ferred to later.

In the above expressions, numerical factors Cg yy, Cyy,
Cy2 Cw3» Cc, Cp s and C ; in Egs. (17), (18), (19)-(23),
and (27) are estimated as

Cg,y=0.320,Cy,=0.0765, Cy,=0.015,
Cy3;=0.183, C.=0.399, (28)
Cp 5=0.0785, Cj ,=0.026,

within the framework of the TSDIA. These values devi-
ate from the ones optimized through the application to

[

some fundamental turbulent shear flows, but they can be
considered to give a measure of their magnitude. On the
other hand, Cj in Eq. (19) is optimized as

Cy=0.37 (29)

from the application to a swirling pipe flow [14,20]. The
capital subscripts E,S, E,U, H, N, C, and T in (B,-j ),
denote eddy viscosity (the steady part), eddy viscosity
(the unsteady part), helicity, the nonlinear part, convec-
tion, and transport, respectively.

Before proceeding to the derivation of a Reynolds-
stress transport equation, we give a brief account of the
mathematical structure of the present asymptotic expan-
sion for the Reynolds stress. A primary feature of the
TSDIA results is that they are obtained in an order of
derivatives of U, K, etc. Namely, the first-order analysis
of B;; gives Eq. (17) or the familiar isotropic-eddy-
viscosity representation that depends linearly on the
first-order derivatives of U. The second-order analysis
leads to Eqgs. (18)—(21), which consist of the terms depen-
dent on the second-order derivatives or the terms quadra-
tic in the first-order derivatives. Equation (22), in which
Tp; includes AS;;, comes from the third-order analysis.
The derivation of Eq. (20) was also done by Rubinstein
and Barton [8] using the RNG method.

Some of (B;;), (n =1-6) have already been applied to
the analysis of turbulent flows and their roles have been
clarified. For example, the nonlinear term (B;;)y [Eq.
(20)] can produce secondary flows in a square-duct flow,
which arise from the anisotropy of turbulent intensities in
the cross section of the square duct and are beyond the
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capability of the isotropic eddy-viscosity representation
(17) [21,22]. In this context, Speziale [3] recommended to
drop the Q-Q terms in Eq. (20) from consistency with ro-
tating isotropic turbulence. The retention of these terms
results in the evolution of an initially isotropic turbulent
state to an anisotropic one under the effect of a rigid-
body rotation. This point contradicts the findings of the
full numerical simulation of Bardina, Ferziger, and Ro-
gallo [23].

B. Renormalization of an eddy-viscosity-type representation

Equation (16) with Egs. (17)-(22) is an asymptotic ex-
pansion for B;; that was constructed in the combination
of the Navier-Stokes equation (1) and the TSDIA. Such
an expansion may be considered a solution of a model
equation for B;;. Therefore, it is anticipated that a
Reynolds-stress transport equation can be obtained by
seeking the equation satisfying Eq. (16) with Egs.
|

Xij=vE,sSij+Cgy(K/€)

Dr S;;+Cr(1/eWvg s

VEs

—CNI(K/G)(BikSkj +Bijki "%B SS’J )—CN2(K/6)(B,ka] +Bjknki )+CN3(K/€)VE,S(Qikaj -

Here we have neglected Ry y [Eq. (27)] in (B;), [Eq. (18)]
since the primary effect of De/Dt has already been incor-
porated through (D /Dt)vg s.

Equation (30) may be rewritten as

D
_D—[ B[]:_}\‘B1]+A'XIJ+V'TBU ’ (32)
where
A=(1/C:)e/K) . (33)

Namely, we have reached a model transport equation for
B;; (the deviatoric part of R;;). The comparison between
Eq. (32) and the exact equation (6) shows that the present
model equation (32) with Eq. (31) is equivalent to

IT;=(11;) , +(IL; )p , (34)

with €;;=2€8,;, where

ij>
(Il;) 4 =Cs(e/K)B;; + CroKSj;

_CRI(BikSkj +Bijki _%B SSU)

— Cra(Bi O+ B Q) » (35)
(I)p = — Cp(1/K W |9, [gglﬂzj g—z
—%Q-VHSU]
—Cguy Dr ves |Si - (36)

Q;

(17)-(22). From such a model equation, we can see how
I1;;, etc. in the Reynolds-stress transport equation (6) are
modeled.

A method of deriving a governing equation leading to
the asymptotic solution (16) is what is called a renormal-
ization procedure [12]. In Eq. (16), we have only the first
few terms in the infinite asymptotic series. In order to
infer the whole series from this restricted information, we
perform the partial but infinite summation of the terms in
the asymptotic expansion (16). The simplest method for
such a summation is to replace vgsS;; in B;;, except
(Bj;);, with B;; (note that vg ¢S;; is the leading term in
the asymptotic expansion for B;;). As a result, we obtain

Bij=Xij_CC(K/€) *D_ Bij—V'TBij s (30)
where
oH oH 5
O L _20.VHS..
ax, +Q; ox, ] 2Q-VHY;

Here we should note that the Q-Q terms in Eq. (31) were
dropped for the sake of consistency with isotropic rotat-
ing turbulence. Model constants Cyg, etc., are related to
Cg,y, etc. in Egs. (18)-(23) as

Cs=1/C¢, Cro=3—Cs/Cc, Cr1=+—Cpy/Cc , a7

Cry=3—Cpy/Cc, Cy=Cyx/Cc, Cé,,U:CE,U/CC'

Let us refer to an equation for the turbulent helicity H,
which is necessary for closing both the present eddy-
viscosity-type and second-order models. Such a model
equation has already been discussed in Ref. [14] and
given as

DH _ aq; | 9
Dt =R;; o, Q; [axi R;—Cyle/K)H
+V'[KQ+('VE,S/O'H)VH] . (38)

Here the terms except the Cy- and (v /0y )-related
ones can be derived exactly using Eq. (5). The model
constants Cy and oy have been optimized as 1.5 and 1.6,
respectively, through the study of a decaying swirling
pipe flow [14,20].

C. Relationship with the conventional models

In Eq. (34), the first part (II;;) , corresponds to the
model of Launder, Reece, and Rodi [15], which is the
prototype of various models of II;; in the second-order
modeling. In the modeling, the first B;;-related term and
the rest are often called the slow and rapid terms, respec-
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tively. The simplest of the model of Launder, Reece, and
Rodi is given by Cgr;=Cpg, (=0.3). The model cannot
satisfy the equilibrium state of homogeneous shear tur-
bulence and the realizability condition guaranteeing the
positive definiteness of turbulent intensities. In order to
improve these deficiencies, Eq. (35) is extended to include
the terms up to the second order in B; with the
coefficients dependent on B:B and B;;B; B [16,17].
Such modeling of II;; corresponds to the renormalization
of the asymptotic expansion for B;; [Eq. (16)] with
higher-order terms included.

In the second part (II;;)p with Eq. (36), the helicity-
related terms correspond to (B;;)y [Eq. (19)]. Within the
framework of the eddy-viscosity-type approximation,
(B;;)p plays a central role in the study of the effect of
swirling or large-scale vortices in a pipe flow [14,20].
Such an effect cannot be properly dealt with using (B;;)y
[Eq. (20)], which leads to the B-S and B-Q terms in
(II;;) 4 and includes the mean-vorticity effect, since

Q=€ Qp, Q=5€Qy . (39)

Namely, (B;;)y cannot be substituted by (B,;)y. This
fact signifies that the helicity-related terms in (II;)g,
which arise from (B;;)y, cannot be substituted by the
B-S and B-Q terms in (Il;), corresponding to (B;;)y-.
Therefore, we may conclude that effects of helicity should
also be considered in the second-order modeling.

The [(D/Dt)vgg]-related term in (II;)p [Eq. (36)]
represents an effect of flow trajectory on II;;. Using Egs.
(10), (23), and the model equation for ¢,

De

7)7=CD,(6/K)PK~CD262/K+V-TD , (40)
we have

”n D ’ n
_CE,U E VE,S Slj:[CR0+CRO(P/E)]KSU 5 (41)

with Cro=Cp yCr 5(2—Cp,) and Cgy=—Cp ;Cp 5(2
—Cp;). Here Cp; (=1.4) and Cp, (=1.9) are model con-
stants, and the € transport rate T} as well as the K coun-
terpart Tx [Eq. (14)] have been dropped for simplicity of
discussion. Therefore, when the [(D/Dt)vy g]-related
term is retained, Cro in (IL;), [Eq. (35)] effectively
changes into Cgo+ CrotCgro(Px/€) [24]), where
Px=B,,,S,, /2. In the limit of vanishing B;;, the Cg,-
related part disappears and does not violate the lowest-
order rapid-distortion constraint where II;; = £KS;.

Finally, let us refer to the transport term T'p; in (B;;)r
(Eq. (22)]. From the TSDIA (3], (B;;)r is given by

(B;)r=C(K /eW sAS,; , (42)

which is rewritten as
(B;j)r=Cc(K /€)W [(vgs/or)V(vgsS;)]+Ryr,  (43)

where the residual terms Ry depend on Vvg ¢ and VS;;.
In Egs. (42) and (43), C and o ; are numerical constants
and are related to C¢ in Eq. (21) as C¢ =C /o r. The sim-
plest renormalization of Eq. (43) gives

or
Ty;j=(vgs/0or)VBy;

[see Eq. (22)]. Equation (44) should be compared with the
model [15]

(44b)

Tpij=—Cr(K/€)R a—jm— B, (45a)
which reduces to

Tp;j=3Cr/Cgs)vgsVBy; , (45b)
under the isotropic-diffusivity approximation that

Ry, =—2K$,,, (Cr is a constant). Therefore, Eq. (44)
obtained using the TSDIA is the simplest model of the
transport effect on B;;.

IV. DERIVATION OF A HIGHER-ORDER
EDDY-VISCOSITY-TYPE EXPRESSION

In the previous section, we bridged a gap between the
eddy-viscosity-type and second-order models through the
application of the renormalization procedure to the
TSDIA results. From the standpoint of the TSDIA, it is
very difficult to derive terms that are of higher order than
(B;;), (n =1-6) because of the mathematical complexity.
Such higher-order effects, however, can become impor-
tant in analyzing various types of turbulent flows on the
basis of the eddy-viscosity-type approximation to the
Reynolds stress. Such a typical example is a turbulent
flow between a rotating channel.

A method for overcoming the above-stated difficulty
with the TSDIA is to use the second-order model (30)
that has been constructed using the TSDIA and the re-
normalization procedure. Namely, we solve Eq. (30)
iteratively with B;;=vg ¢S;; as the lowest-order solution.
In the first iteration, B;; on the right-hand side of Eq. (30)
is simply replaced with v ¢S;;. At this time, we move to
the frame that is rotating with the angular velocity wg.
In such a frame, the mean-vorticity tensor Q,-j and the
mean vorticity 2 are replaced with the intrinsic counter-
parts [3]

Qp=Q 2608 , (46a)

Q, =0+ 20 , (46b)
respectively. As a result, we obtain
B;;=(Bj;)gs+(B;j)gy+(B;)y+(B;)y+Rp , 47)

where (Bj;)g s and (B;;)g y are given by Egs. (17) and
(18), respectively [Rg iy in Eq. (18) was dropped], and

OH JdH
(By)y=—Cy(1/€Wgs |Qy laxj Ty [a—x, l
—2Q,-VHS, I S (48)
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(BU )N= —CNI(K/€)VE,S(SikSkj +Sijki _%'S :SSU)
—Cna(K/€)vg (S Qp; +Sp Q) - (49)

The residual terms R consist of the convection effect of
(B;;). and the transport effect (B;;)r.

In (B;;)y [Eq. (49)], the frame rotation (ej) effect is in-
cluded in the ;-related terms. This effect has already
been examined using the TSDIA [25], but it is not
sufficient for describing important properties associated
with the anisotropy of turbulent intensities that is gen-
erated by effects of frame rotation. This point will be de-
tailed in the later discussion of a rotating channel flow.
In order to overcome this difficulty, we proceed to the
second iteration. In the iteration, we have many new
terms, but our attention is focused on the €, effect close-
ly connected with frame rotation. As a result, we have

B, =(B;)g+(B,)y+(B,)y+(B,)yve+Ry , (50)

where
-1

Dr (51)

(Bij)E:VE,S ll’l'VE’S

ij

(Bij)nvi= —Cno(K/€)[(By INQp; + (B InQp 1, (52)

and Ry consist of part of (B;)., (B;)r, and other
higher-order terms. The constant C; given by

Crg=Cc—Cgy (53)

is positive from Eq. (28). The eddy-viscosity term (B;;)g
will be discussed below.

Equation (52) for (B;; )y, vr arises from the replacement
of B;; in the Cy,-related terms of Eq. (31) with (B;;)y.
On the other hand, the Q,-related terms in (B;;)y [Eq.
(49)] come from the replacement of B;; in the Cy,-related
terms of Eq. (31) with the isotropic-eddy-viscosity repre-
sentation (B;;)g ¢ [Eq. (17)]. Since (B;;)y is closely asso-
ciated with anisotropy of turbulent intensities, (B;;)y ve
represents the interaction between anisotropy of tur-
bulent intensities and effects of vorticity and frame rota-
tion (VF). It is difficult to calculate higher-order terms
like (B;; )y, vy using the TSDIA, but they can be easily ob-
tained using the above method. This point is a merit of
such a method.

Equation (51) is a combination of the steady-eddy-
viscosity approximation (B;;)g s [Eq. (17)], the unsteady
counterpart (B;;)g y [Eq. (18)], and —Cc(Dvg g/D1)S;;
that is part of (B;;)c [Eq. (21)]. Within the framework of
the TSDIA, (B;;)g s is the lowest- or first-order term in
the asymptotic expansion for B;;, whereas (B;;); y and
(B;j)c are the second-order one implying the correction
terms to the former. In this original derivation, these
corrections are valid only when they are much smaller
than (B;;)5s. When these two effects are incorporated
into the current turbulence models like the K -e model,
their excessive growth in a narrow region often leads to
numerical instability and gives rise to wrong effects on
the entire flow region. A method for reducing such
effects is to extend the present expression to a more gen-
eral functional form whose asymptotic expansion in-

cludes (B;;)g s, (B;; )y, and part of (B;;)¢ as the leading
three terms. Equation (48) is the simplest candidate. In
reality, Shimomura [26] incorporated effects of magnetic
fields on a subgrid-scale model in a similar form to
succeed in explaining the turbulence suppression mecha-
nism by magnetic fields. The relationship of (B;;); with
effects of an adverse pressure gradient will be referred to
later.

V. ROTATING CHANNEL FLOW

Equation (50) gives some important corrections to the
isotropic eddy-viscosity representation (By;)g [Eq. (51)].
The second term (B;;)y contains the effect of turbulent
helicity connected with the mean vorticity and is ap-
propriate for describing helical flow structures. Its im-
portance was really confirmed in the study of a swirling
pipe flow [14,20]. The third term (B;;)y expresses non-
linear effects of the mean velocity gradient, which is
linked with the anisotropy of turbulent intensities in a
shear flow. This point was also confirmed in the studies
of channel flow, secondary flows in a square-duct flow,
etc. [21,22,27].

In various engineering and natural sciences, effects of
frame rotation often become very important. They are
usually connected with other effects and are generally
difficult to abstract in a simple form. One of the few ex-
amples showing effects of frame rotation in a clear form
is a turbulent flow in a rotating channel. Here we consid-
er that two walls are parallel to the x axis and are located
at y =xDcy /2 (Dcy is the width of the channel). The
channel is rotating with the angular velocity vector wp
that is along the z direction. In this flow situation, the
mean velocity and the angular velocity are written as
(U(y),0,0) and (0,0,wfz), respectively. The rotating
channel flow is important not only for the above-stated
reason but also from the standpoint of mechanical en-
gineering. Many mechanical-engineering flows related to
turbine blades really have rotating-channel-like proper-
ties.

A typical property of a rotating channel flow is asym-
metry of the mean velocity, the shear stress, the turbulent
energy, etc. with respect to the center line. These asym-
metries are linked with one another. For example, the
turbulent energy K is intensified near the lower wall,
whereas it is weakened near the upper wall. This proper-
ty can be understood intuitively considering the Coriolis
force. Under the force, fluid is pushed towards the lower
wall, near which the mean velocity gradient steepens. On
the other hand, the Coriolis force tends to pull fluid from
the upper wall and the mean velocity gradient becomes
more gentle. These effects lead to the above-stated prop-
erty of K.

In the foregoing flow geometry, (B;;)y [Eq. (48)] and
(B;j)y [Eq. (49)] do not contribute to R,, (=—(u'v'))
(u' and v’ are the velocity fluctuations in the x and y
directions, respectively). As a result, the direct effect of
op on {u'v') cannot be explained using (B;)y and
(B;j)y, although the wg-related terms are included in
them. At the present stage, any eddy-viscosity-type ap-
proximation has not succeeded in the proper treatment of
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a rotating channel flow (the attempt of Shimoura [28] will
be referred to later). The second-order model [29] and
the large eddy simulation [30] based on the subgrid-scale
modeling can overcome this difficulty. Specifically, the
cause of the success in the former lies in the Coriolis
effect on the Reynolds-stress transport equation. It is
written as

Cijzz(eikmmeRkj +6jkmmeRki) ’ (54)

which is added to the right-hand side of Eq. (6). When
we approximate R;; in Eq. (54) by the isotropic-eddy-
viscosity representation (B;;)g, the resulting expression is
very similar to the wp-related part in (B;;)y. In the
present flow situation, such a part does not contribute to
R,,, as was noted above. This fact signifies that the effect
of frame rotation in a rotating channel flow is closely as-
sociated with the interaction between the frame-rotation
effect and the anisotropy of turbulent intensities, as will
become clearer.

The o-related part of (B;;)y v [Eq. (52)], which is
denoted by (B;;)y, r, is given by

(Bij ) n,p =2CNo(K /€) €3 @pm (Byj )N + €jkm @pm (Bri )y ] -
(55)
The contribution of Eq. (55) to R, (=B,,

2CN2(K/€)wFZ[(Byy)N_(Bxx )N] . (56)
We use Eq. (49) to obtain

) is

2
(B )y=—(K /€W g idg (2Cyy+2Cxy) (57a)
2
_ au | ,,
(.Byy )N—_(K/G)VE,S —ZJ-)— (TCNI_—ZCNZ) . (57b)
Therefore R,, is given by
2
du
R,,= —= | +8C%,(K /€)? —=
xy VE,S dy CNZ( /6) VE,SwFZ dy (58)

In Eq. (58), the first term is positive and negative near the
lower and upper walls, respectively, whereas the second
term is always positive. As a result, R,, is asymmetric
with respect to the center line (y =0). The production
rate of K, which is defined by Px =R,,(dU/dy), is writ-
ten as

2

U\ 18C2, (K /e ve sz

dy (59)

dU
P, =
K~ VEs _d z

Equation (59) clearly shows that the wp effect arising
from the second term enhances the turbulent-energy pro-
duction near the lower wall, whereas the oy effects weak-
ens it near the upper wall. This result is consistent with
the foregoing observation of K.

Nisizima [31] incorporated the new term (B;)y r into
the turbulence model [22] of K -€ type to examine a rotat-
ing channel flow with the Reynolds number R
(=UgDcy /v)=35000 and the rotation number R,
(=wpzDcy/Up)=(0,0.068,0.2) (Up is the bulk mean

velocity). Nisizima found that (Bj;)y r can really pro-
duce the asymmetry of the mean velocity and the tur-
bulent energy with respect to the center line. At the
same time, it was found that the addition of

CprK €0y, (3U; /0x;) (60)

to the right-hand side of the € equation (40) leads to
better reults, where Cp is a model constant (see Ref. [31]
for the details of numerical computation). This addition-
al effect was originally pointed out by Shimomura [28],
who used a method [4] deriving a model € equation with
the aid of the TSDIA results.

As an example illustrating the performance of the
present model, the comparison between the computation-
al [31] and experimental [32] results about the mean ve-
locity and the shear stress is given in Figs. 1 and 2. These
computational results show that the important features of
a rotating channel flow can be captured within the frame-
work of the eddy-viscosity-type approximation with the
oy effect incorporated, although there is some room for
improvement of the quantitative accuracy of the results.

Here we should note the additional term given by Eq.
(60). The inclusion of this term in the € equation (40)
leads to better results, at least in the analysis of a rotating
channel flow. The new term, however, eliminates
€/K =0 as a fixed point in the dynamical system, consti-
tuted by the present system of K -€ type [3]. As a result,
the simple addition of Eq. (60) leads to a lack of the abili-
ty to predict restabilization in the case of homogeneous
turbulent shear flow in a rotating frame, which was ex-
amined in detail by Speziale and Mhuiris [3,33]. In order
to remove this shortcoming and retain the oy effect on
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¥/ (D /2)
FIG. 1. Mean velocity U. Computation [31]: ——
R =35115, R4=0.2; — — —, R =34962, R,=0.068; - - . -,

R =35009, R, =0. Experiment [32]: O, R =35000, R,=0.42;
X, R =35000, R;=0.068; 0, R =36000, R,=0.
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FIG. 2. Shear stress (the symbols are the same as in Fig. 1).

the € equation, we need a more elaborate € equation. Its
construction is left for future interesting work.

VI. TRAJECTORY EFFECTS
ON THE EDDY VISCOSITY

In Sec. V we, proposed to include the effect of the
Lagrange derivative into the isotropic-eddy-viscosity rep-
resentation (B;;)g [Eq. (51)]. This effect expresses the
convection effect on K and € through (D/Dt)vgs. In
what follows, we shall call it the trajectory effect and dis-
cuss its implication in the context of effects of an adverse
pressure gradient.

Besides the shortcomings referred to in Sec. V, the
current isotropic-eddy-viscosity representation suffers
from the deficiency related to an adverse pressure gra-
dient. Under such a gradient, the streamwise velocity U
is retarded and the flow often separates from a solid wall.
The effect of an adverse pressure gradient most typically
appears through negative 0U/0x (x is the streamwise
coordinate and y is the coordinate normal to it). Under
the eddy-viscosity representation for the Reynolds stress,
however, the K production rate Py in a turbulent bound-
ary layer is insensitive to the streamwise change of U,
since Py is approximated as R, ,(dU /3y )=~vy s(3U /3y )?
and does not depend directly on dU /3x [vg s is given by
Eq. (23)]. This point was discussed in detail by Rodi and
Sheuerer [34]. As a method for incorporating the effect
of 9U /dx, Hanjalic and Launder [35] proposed to in-
clude the effect of irrotational strain in the € equation.
Another method is to include the trajectory effect given

by D /Dt, which also expresses a kind of streamwise-
change effect. In what follows, we shall adopt the latter
viewpoint.

A prominent feature of an adverse pressure gradient is
that the shear stress R,, increases greatly, whereas the
mean velocity gradient dU /dy does not change as much.
As a result, the eddy viscosity vgs (=CpgsK 2/e) in-
creases. The difficulty with the current eddy-viscosity
models under an adverse pressure gradient lies in the
overestimate of vg g. The entirely similar situation is also
encountered in a turbulent flow past a bluff body (its typi-
cal example is a flow past a rectangular building). In this
case, the flow in the front side of the body is retarded and
the turbulent intensities increase. The models of K -€
type based on the eddy viscosity overestimate them, com-
pared with the observational and large eddy simulation
results. This point was discussed in detail by Murakami,
Mochida, and Hayashi [36,37].

A feature of the above-stated flows lies in the stream-
wise increase in the eddy viscosity v 5 under the effect of
the retardation of the streamwise velocity. In this case,
we have positive (D /Dt)vg 5. In the present model (51),
vps is multiplied by the factor [1+Crg(K/
€)(D /Dt)Invg g]7'. As a result, this factor bears a role
in alleviating the excessive increase in the net eddy
viscosity vy under the adverse pressure gradient. The at-
tempt to include effects of streamwise change was also
proposed for the subgrid-scale modeling [38], and the im-
provement of the Smagorinsky model was confirmed [39].

VII. CONCLUDING REMARKS

In this work, we made full use of the TSDIA results for
the Reynolds stress to bridge a gap between the eddy-
viscosity-type and second-order models that have been
studied rather independently. Through this work, we
added some effects such as the turbulent-helicity one into
the conventional second-order models. Moreover a
higher-order eddy-viscosity-type expression for the Rey-
nolds stress, which is beyond the analysis of the TSDIA,
was obtained by applying an iterative approximation to
the second-order model. Specifically, the usefulness of
the presently found frame-rotation effect was confirmed
in the study of a rotating channel flow. The inclusion of
trajectory effects in the isotropic eddy viscosity was also
proposed for the study of turbulent flows under adverse
pressure gradients.
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